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It has been suggested to describe the sound field in a wedge-shaped duct in a
cylindrical co-ordinate system in which the boundaries of the wedge lie in a
co-ordinate surface. This suggestion was developed in a companion paper [1]. The
wave equation can be separated only if the boundaries are ideally reflecting (rigid
or soft). Two solutions were proposed in reference [1] for absorbing boundaries.
In the first solution, the sound field is composed of ‘‘ideal modes’’ (modes in a
wedge with ideally reflecting boundaires); the boundary condition at the absorbing
boundary then leads to a system of equations for the mode amplitudes. The
problem with this method lies in the fact that there is no radial orthogonality of
the ideal modes so that the precision of the field synthesis by ideal modes is
doubtful. In the second method in reference [1] one defines ‘‘fictitious modes’’
which satisfy the boundary conditions at the flanks exactly and which are based
on hypergeometric functions as radial functions, but which produce a ‘‘rest’’ in
the wave equation. It was described how this rest can be minimized; this procedure
leads to slow numerical integrations. In the present paper, the wedge is subdivided
into duct sections with parallel walls (the boundary is stepped); the fields in the
sections are composed of duct modes (modes in a straight lined duct); the mode
amplitudes are determined from the boundary conditions at the section limits. The
advantages of the present method are (analytically) the duct modes are orthogonal
across the sections, so the mode amplitudes can be determined with the usual
precision of a modal analysis, and (numerically) no numerical integrations are
needed.
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1. INTRODUCTION

The operation costs per year of big industrial silencers (electrical power consumed
by the static pressure loss of the silencer) may exceed the costs of the investment
in them. A possibility for the reduction of the static pressure loss is the application
of silencer cascades: the silencer is subdivided into sections with free duct widths
of the sections tuned to high attenuation in different frequency bands (examples
of stepped silencer cascades are described in reference [2]). The advantage of the
silencer cascading, however, is reduced if the transitions between the sections are
stepped. Wedge-shaped lined transitions evidently would be advantageous. A
further field of applications of wedge-shaped ducts are the broadening transitions
between the duct and a splitter type silencer as well as the contracting transitions
from the silencer section to the duct. Because such wedge-shaped duct sections
(with lined or rigid flanks) will act as mode filters, it would be necessary for a good
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silencer design to have a theory available which describes the sound field in the
wedge for an arbitrary modal content of the exciting sound wave at the entrance
of the wedge.

The analysis of the sound field in wedge-shaped ducts is simple if the wedge
boundaries are ideally reflecting; the ‘‘ideal modes’’ in such sections separate into
products of trigonometric functions for the azimuthal dependence and cylindrical
functions (Bessel, Neumann, Hankel functions) for the radial dependence in a
cylindrical co-ordinate system (r, q) which contains the wedge boundaries as
co-ordinate surfaces. The ‘‘ideal modes’’ are orthogonal over the wedge angle. So
one can try to compose the sound field in a wedge-shaped duct with absorbing
boundaries by a superposition of ideal modes. The boundary condition at the
absorbing boundary will lead to a system of equations for the mode amplitudes
(see reference [1]). Even when it is assumed that the ideal modes are a complete
system for the description of general sound fields, there remains the principal
problem that there do not exist orthogonality relations for the ideal modes along
the flank so that the precision of numerical solutions for the mode amplitudes
cannot be guaranteed. A second approach to a solution, therefore, was described
in reference [1], in which ‘‘fictitious modes’’ are defined which exactly satisfy the
boundary condition at the absorbing flank and are orthogonal over the wedge
angle. These fictitious modes have the shape. T(h(r)q)R(r) in which
T(h(r)q)= cos (h(r)q) or T(h(r)q)= sin (h(r)q) for modes which are symmetrical
with respect to q=0 or antisymmetrical, respectively, and R(r) are
hypergeometric functions. The azimuthal wave number h(r) is a function of r; it
is one of the solutions of the characteristic equation (different solutions define
different fictitious modes). The fictitious modes, however, produce a ‘‘rest’’ of the
wave equation solution. Two methods are described in reference [1] of how the
rest can be minimized. Both methods need numerical integrations which would
make the application of fictitious modes in numerical computations rather slow.

A completely different method of construction of modes in a wedge-shaped
space with an absorbing flank was described by Felsen, Arnold and Topuz in
references [3, 4] for the important underwater acoustic application of an inclined
absorbing seabed. The present author did not succeed in transforming their
method from the condition of a soft upper boundary to a rigid upper boundary
and from a bulk reacting lower boundary to a locally reacting lower boundary.
The reasons for the failure were not these differences, but the ‘‘remainder
function’’ E(u) of those authors. This remainder was neglected by the authors
under the condition that the wedge angle is small (smaller than 3°), a condition
which does not hold in duct applications. In fact, the (transformed) function E(u)
diverges ‘‘super-exponentially’’ (exponential increase of the exponent in an
exponential function) at the ends of the integration path C in the complex plane
of u in references [3, 4] and also at the ends of any other reasonable path of
integration. Therefore, the method of Felsen, Arnold and Topuz could not be
transformed for silencer duct applications.

Instead, a construction of wedge modes by ‘‘duct modes’’ shall be described
below. The duct modes are modal solutions in a straight lined duct of (half) duct
height h, lined with a locally reacting absorber having a normalized surface
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admittance G. These duct modes are orthogonal to each other over the duct width.
The wedge-shaped duct will be approximated (in the computation only) by a
stepped cascade of straight duct sections. The sound field in a section is formulated
as a superposition of the duct modes of that section. Due to the orthogonality of
the duct modes, the boundary conditions at the end planes of the sections (fitting
of the sound pressure and of the axial particle velocity) can be solved for the modal
amplitudes with the precision of the usual modal analysis (which is a Fourier
analysis over space and wave numbers and as such gives the fits of the sound fields
with a minimum average squared error). The mode order of the field solution in
the wedge is defined by the mode order of a single duct mode which is incident
on the wedge from a straight entrance duct having the width of the entrance plane
of the wedge and the same lining as the wedge. The task will be formulated for
a given, arbitrary mode mix of the incident modes.

2. THE OBJECTS

We consider the converging stepped wedge as in Figure 1(a) and the diverging
stepped wedge as in Figure 1(b). Only one half of the wedge is shown; the plane
y=0 is either a plane of symmetry of the sound field and of the duct or a plane
of antisymmetry of the field.

The sections (including the entrance duct) are numbered with i=0, 1, . . . , I;
i=0 belongs to the entrance duct. All sections are lined with a locally reacting
absorber having a normalized (by the characteristic impedance Z0 of air)
admittance G; their duct heights are hi and the length Dx; the step height is Dy.
The axial co-ordinate of the end of the ith section is xi , its entrance is at xi−1

(except for the entrance duct which is assumed to be infinitely long, see for the
role of x−1). The wedge is assumed to be terminated by a normalized admittance
Gt (for reasons of simplicity; for more general terminations see below). The wedge
is excited by a set of modes incident from the entrance duct with the vector {A0,m}
of mode amplitudes. The incident modes can either be symmetrical with respect
to y=0 or antisymmetrical. The fields in the wedge sections retain the type of
symmetry. Skew fields with respect to y=0 can be described by a superposition
of symmetrical and antisymmetrical modes which do not couple with each other.
A time factor ejvt is supposed for all field components. The free-field wave number
is k0 =v/c0 (c0 is the speed of sound).

The locally reacting absorber as the duct lining is chosen here for reasons of
simplicity; the orthogonality relation of the duct modes then is simpler than with
a bulk reacting absorber (for fields in a wedge with a bulk reacting absorber, see
reference [2, chapter 4]).

3. FORMULATION OF THE SOUND FIELD

The field pi (x, y) is composed in the ith section by forward waves pe,i (x, y) and
backward waves pr,i (x, y) which themselves are superpositions of duct modes:

pe,i (x, y)= s
me 0

Ai,mqi,m (y) e−gi ,m (x− xi−1), (1)
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Figure 1. (a) A stepped converging wedge-shaped duct following a straight entrance duct, both
lined with a locally reacting absorber of (normalized) admittance G. The wedge is terminated with
a locally reacting absorber of (normalized) admittance Gt . The wedge sections are numbered
i=1, 2, . . . , l; the entrance duct belongs to i=0; the section height is hi ; the section length is Dx.
(b) A stepped diverging wedge; otherwise as in Figure 1(a).

pr,i (x, y)= s
me 0

Bi,mqi,m (y) e+gi ,m (x− xi ). (2)

The amplitudes Ai,m of the forward modes are ‘‘defined’’ in the entrance plane
x= xi−1 of the ith section; the amplitudes Bi,m of the backward modes are
‘‘defined’’ in the exit plane x= xi ; the amplitudes A0,m of the incident modes are
defined at x−1 = x0 −Dx in order to retain the scheme. The lateral profiles of the
duct modes are

qi,m (y)=6cos (oi,my),
sin (oi,my),

symmetrical
antisymmetrical7 . (3)
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The wave equation delivers the relation between the lateral wave numbers oi,m and
the axial propagation constants gi,m as

g2
i,m = o2

i,m − k2
0 , Re {gi,m}e 0, (4)

where the sign convention corresponds to the farfield condition. The boundary
condition at the absorbing wall of the duct sections leads to the characteristic
equations

(oi,mhi ) tan (oi,mhi )= jk0hiG, symmetrical.

(oi,mhi ) cot (oi,mhi )=−jk0hiG, antisymmetrical. (5)

A mode-safe (i.e., safe against jumping between modes) and fast algorithm for
their solution for a set m=0, 1, 2, . . . of modes in the sections i=0, 1, . . , , I is
described in reference [1]. The exceptional role of the surface wave mode (a mode
which decays exponentially away from the absorber) is also discussed there.

One will need the norms Ni,m of the duct modes,

1
hi g

hi

0

qi,m (y)qi,n (y) dy= dm,nNi,m , Ni,m =
1
2 012

sin (2oi,mhi )
2oi,mhi 1 , (6)

and the coupling coefficients C(i,m; k,n) of the mode of order m in the section i
with the mode of order n in the section k:

1
hi g

hi

0

qi,m (y)qk,n (y) dy=C(i,m; k,n),

C(i,m; k,n)=
1
2 0sin (oi,m − ok,n )hi

(oi,m − ok,n )hi
2

sin (oi,m + ok,n )hi

(oi,m + ok,n )hi 1 . (7)

The signs correspond to symmetrical and antisymmetrical modes, respectively.
Note that with k= i in equations (7), one has the integral of equation (6), and
the orthogonality of the modes is shown by collecting the two fractions into one
denominator and expanding the sin ( . . . ) of the difference and sum, then inserting
equations (5) and taking into account that G does not depend on the mode order.

With our special termination of the wedge with an admittance Gt one has

{BI,m}= {Mt} ) {AI,m}= {rm e−gI ,mDx} ) {AI,m}, (8)

where {Mt} is a general coupling matrix ( ) is the sign of matrix multiplication),
which in this special case is a diagonal matrix with the values rm e−gI ,mDx on the main
diagonal, where rm are the modal reflection factors at the exit of the last section
i= I,

rm =
gm −Gt

gm +Gt
=

jgI,m /k0 +Gt

jgI,m /k0 −Gt
, (9)
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and gm are the normalized axial modal admittances of the modes of pe,I (x, y),

gm =Z0
vxeI,m (xI )
peI,m (xI )

=−j
gI,m

k0
. (10)

In other, more general cases of termination, e.g., by a lateral absorber or by a duct
(lined or with rigid walls) which itself is properly terminated, it can be shown that
the first form of equation (8) holds (with {Mt} no longer diagonal). In principle
it is that general form of equation (8) which will be applied below.

4. MODAL ANALYSIS IN THE CONVERGING WEDGE

The boundary condition for the sound pressure at the entrance x= xi−1 of the
ith section (ie 1) is ( . . .=! . . . indicates a requirement)

pe,i−1(xi−1, y)+ pr,i−1(xi−1, y)=! pe,i (xi−1, y)+ pr,i (xi−1, y), 0E yE hi ,

(11a)

s
m

(Ai−1,m e−gi−1,mDx +Bi−1,m )qi−1,m (y)=! s
m

(Ai,m +Bi,m e−gi ,mDx)qi,m (y). (11b)

The interval 0E yE hi is the range of definition of the boundary condition; it is
also the range of orthogonality of the modes with qi,m (y), therefore, the integral
operator is applied on both sides of equation (11b)

1
hi g

hi

0

. . . . · qi,m (y) dy, (12)

and the linear system of equations (m=0, 1, 2, . . . )

(Ai,m +Bi,m e−gi ,mDx)Ni,m = s
n

(Ai−1,n e−gi−1,nDx +Bi−1,n )C(i,m; i−1, n), (13)

are obtained. It is an upward iteration scheme in i for the two sets of amplitudes
{Ai,m}, {Bi,m}.

The boundary condition for the axial component of the particle velocity at the
entrance x= xi−1 of the ith section (ie 1) is

vxe,i−1(xi−1, y)+ vxr,i−1(xi−1, y)=! 6 0,
vxe,i (xi−1, y)+ vxr,i (xi−1, y),

hi E yE hi−1

0E yE hi 7.
(14)

On the right side of equation (14), it is assumed that the head of the step in the
interval hi E yE hi−1 is rigid. This assumption is reasonable for locally reacting
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absorbers which do not support sound oscillations parallel to their surface.
However, it should not be overlooked that a rigid head of a step is an artefact
of our model of approximation to the wedge by stepped duct sections; the influence
of the heads will become negligible with an increasing number of steps. The
boundary condition for the particle velocity is

s
m

(Ai−1,m e−gi−1,mDx −Bi−1,m )gi−1,mqi−1,m (y)

=! 8 0,

s
m

(Ai,m −Bi,m e−gi ,mDx)gi,mqi,m (y),

hi E yE hi−1

0E yE hi 9. (15)

Now the range of the boundary condition is the wider range 0E yE hi−1. It would
be normal, therefore, to apply an orthogonality integral like expression (12), but
now in the wider range i−1, i.e., on the other side of the entrance plane as
compared to expression (12). This ‘‘two-sided’’ orthogonality, however, would
produce a downward iteration scheme, and the numerical solution of the two
iteration schemes (each in a different direction) would run into problems with
ill-conditioned matrices when the number I of sections is not very low (see below
for more about this point). Although experience shows that the precision of a
‘‘two-sided’’ orthogonality is somewhat higher than that of a ‘‘one-sided’’
orthogonality for a small number of sections, the same orthogonality integral as
in expression (12) is applied on the lower line on the right side of equation (15).
On the left side of equation (15), the zero value of the particle velocity in
hi E yE hi−1 is taken into consideration and the integral is extended up to hi−1;
thus, one applies

1
hi g

hi

0

. . . · qi,m (y) dy right,
1
hi g

hi−1

0

. . . · qi,m (y) dy left. (16)

The rigid step head is thus considered implicitly. These operations will give the
system of equations

(Ai,m −Bi,m e−gi ,mDx)gi,mNi,m =
hi−1

hi
s
n

(Ai−1,n e−gi−1,nDx −Bi−1,n )gi−1,nC(i−1, n; i, m).

(17)

The boundary conditions at the exit plane x= xi of the ith section lead to systems
of equations which would be obtained from equations (13) and (17) by the
replacement i:i+1.
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From the combination of equations (13) and (17), one gets

Ai,m =
1

2Ni,m
s
n

Ai−1,n e−gi−1,nDx0C(i,m; i−1, n)+C(i−1, n; i, m)
gi−1,nhi−1

gi,mhi 1
+ Bi−1,n0C(i,m; i−1, n)−C(i−1, n; i, m)

gi−1,nhi−1

gi,mhi 1 , (18)

Bi,m =
1

2Ni,m e−gi ,mDx s
n

Ai−1,n e−gi−1,nDx0C(i,m; i−1, n)−C(i−1, n; i, m)
gi−1,nhi−1

gi,mhi 1
+ Bi−1,n0C(i,m; i−1, n)+C(i−1, n; i, m)

gi−1,nhi−1

gi,mhi 1 , (19)

These are two upward iteration schemes in i. The schemes begin at i=1. Then
the Ai−1,m on the left sides are the known amplitudes A0,m of the incident modes;
the terms, including them, are purely numerical. B0,m on the left sides are unknown
and remain symbolic quantities. At any step i of the iteration, one will have
systems of equations of the form

Ai,m = s
n

ai,n + bi,nB0,n , Bi,m = s
n

ai,n + bi,nB0,n , (20)

with purely numerical ai,n , bi,n , ai,n , bi,n . Such a mixed numerical and symbolic
computation can easily be performed with computer programs for numerical and
symbolic computations (such as Mathematica). In a purely numerical computing
frame (such as F) the transformations from equations (18) and (19) to
equation (20) must be explicitly formulated. The iteration ends with i= I where
on the left sides of equations (18) and (19) stand {AI,m} and {BI,m} which, with
equation (8), reduces to only the {AI,m}, which are yet unknown. Thus equations
(20) are for i= I two linear systems of equations in the two sets of amplitudes
{AI,m}, {B0,n}, and are inhomogeneous systems of equations because of the
numerical terms aI,n , aI,n . After they are solved for {B0,n}, all amplitudes {Ai,m},
{Bi,m} can be evaluated by insertion. Thus, the task of the field computation in a
converging wedge is completed.

5. MODAL ANALYSIS IN THE DIVERGING WEDGE

The boundary condition for the sound pressure at the entrance x= xi−1 of the
ith section now is

pe,i−1(xi−1, y)+ pr,i−1(xi−1, y)=! pe,i (xi−1, y)+ pr,i (xi−1, y), 0E yE hi−1,

(21)
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which with the field formulations reads

s
m

(Ai−1,m e−gi−1,mDx +Bi−1,m )qi−1,m (y)=! s
m

(Ai,m +Bi,m e−gi ,mDx)qi,m (y). (22)

The application of integral operator

1
hi−1 g

hi−1

0

. . . . · qi−1,m (y) dy (23)

on both sides gives the system of equations (m=0, 1, . . . )

(Ai−1,m e−gi−1,mDx +Bi−1,m )Ni−1,m = s
n

(Ai,n +Bi,n e−gi ,nDx)C(i−1, m; i, n). (24)

The boundary condition for the axial particle velocity at the entrance x= xi−1 of
the ith section is

vxe,i (xi−1, y)+ vxr,i (xi−1, y)=! 6 0,
vxe,i−1(xi−1, y)+ vxr,i−1(xi−1, y),

hi−1 E yE hi

0E yE hi−17.
(25)

Here again the orthogonality integral is applied on the narrow section i−1 (i.e.,
on the second line of the right side of equation (25)) and it is extended from hi−1

to hi on the left side, thus taking into consideration the vanishing particle velocity
at the head of the step. That is, one applies

1
hi−1 g

hi−1

0

. . . . · qi−1,m (y) dy right,
1

hi−1 g
hi

0

. . . . · qi−1,m (y) dy left, (26)

and obtains

(Ai−1,m e−gi−1,mDx −Bi−1,m )gi−1,mNi−1,m

=
hi

hi−1
s
n

(Ai,n −Bi,n e−gi ,nDx)gi,nC(i, n; i−1, m). (27)

Both systems of equations (24) and (27) are downward iterations in i, which, when
evaluated for individual amplitudes, can be written as

Ai−1,m =
1

2Ni−1,m e−gi−1,mDx s
n

Ai,n0C(i−1, m; i, n)+
gi,nhi

gi−1,mhi−1
C(i, n; i−1, m)1

+ Bi,n e−gi ,nDx0C(i−1, m; i, n)−
gi,nhi

gi−1,mhi−1
C(i, n; i−1, m)1 , (28)
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Bi−1,m =
1

2Ni−1,m
s
n

Ai,n0C(i−1, m; i, n)−
gi,nhi

gi−1,mhi−1
C(i, n; i−1, m)1

+ Bi,n e−gi ,nDx0C(i−1, m; i, n)+
gi,nhi

gi−1,mhi−1
C(i, n; i−1, m)1 . (29)

When one begins the iteration with i= I, the equations have the form

AI−1,m = s
n

bI,nAI,n , BI−1,m = s
n

bI,nAI,n , (30a)

with still unknown amplitudes {AI,n}, and, in the general step i,

Ai−1,m = s
n

bi,nAI,n , Bi−1,m = s
n

bi,nAI,n , (30b)

with numerical values of the bi,n and bi,n . At the end with i=1, one has the known
amplitudes {A0,m} of the incident modes on the left side of the first line in equation
(30b). Thus, it can be solved for the {AI,n} and with these all other amplitudes
{Ai,m}, {Bi,m} are computed by insertion.

6. NUMERICAL EXAMPLES

Before a few numerical examples are shown, some remarks should be made
which relate to the amount and precision of the numerical computations. The
computations in the previous section about the diverging wedge evidently are
simpler than for the converging wedge in section 4 (no mixed numerical and
symbolic terms in equation (30b), only a simple system of equations to be solved
at the end of the iteration instead of a couple of systems of equations). However,
the assumption of symbolic amplitudes {AI,n} in fact means the assumption of
about unit values for these amplitudes during the iteration, which may be in error
to the final values of the {AI,n} by orders of magnitude; the final equation to be
solved may become badly conditioned for the numerical solution if the upper limit
mhi of the mode orders is assumed unnecessarily high. The next remark concerns
the number I of steps. It is known from many numerical and experimental
examples in the literature of approximations of steady variations of parameters
in sound fields by parameter steps that the number I of steps should not be too
low. As a rule of thumb, one should remain below k0Dy1 0·35. An upper limit
for k0Dy is also set by the algorithm for the solution of the characteristic equation.
Under the condition that k0hiG does not pass too close to one of the branch points
of the transformation defined by the characteristic equation, k0Dy1 0·35 is an
upper limit also in this respect. If one of the k0hiG approaches a branch point, the
step k0Dy must be selected with a smaller value.
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Figure 2. (a) Lateral wave nunbers oi,mhi of the six lowest modes m=0, . . . , 5 for the wall
admittance G=2+j. The points are stepped with k0Dh=0·3 between k0h=1 and k0h=4; the
directions for increasing k0h are indicated. (b) as (a), but with the wall admittance G=2−j.

A further remark concerns different formally possible ways in which the modal
analysis could be performed. It was mentioned above that the application of a
‘‘two-sided’’ orthogonality produces better precision when applied to field
transformations by just one intermediate section, but it cannot be applied in the
case of many sections. This aspect is illustrated for the converging wedge. The
boundary condition, equations (14) and (15), for the axial component of the
particle velocity at the entrance x= xi−1 of the ith section would be transformed
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to a system of equations for the amplitudes with a two-sided orthogonality by the
application of the integrals

1
hi−1 g

hi−1

0

. . . . · qi−1,m (y) dy left,
1

hi−1 g
hi

0

. . . . · qi−1,m (y) dy right (31)

on both sides of equation (15), where the reduction of the upper limit hi−1:hi is
demanded by the vanishing particle velocity at the head of the step. This leads to
the system of equations

(Ai−1,m e−gi−1,mDx −Bi−1,m )gi−1,m =
hi

hi−1
s
n

(Ai,n −Bi,n e−gi ,nDx)gi,nC(i, n; i−1, m).

(32)

which is applied in combination with the system of equations (13). The directions
of both iteration schemes are opposite to each other. The direction of iteration
of system (13) can be changed by its formal solution when it is written as a matrix
equation,

{Ai−1,m e−gi−1,mDx +Bi−1,m}=6C(i, n; i−1, m)
Ni,n 7

−1

) {Ai,n +Bi,n e−gi ,nDx} , (33a)

Figure 3. Sound pressure level 20 log =p= in a converging wedge with a wall admittance G=2−j
excited by the fundamental mode m=0 of the entrance duct. Gt =4, mhi =5, I=10, Dx/Dy=0·5,
h0Dhi =0·3, {A0,m}= {1, 0, 0, 0, 0, 0}.
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Figure 4. As Figure 3, but now with the first higher mode m=1 as the incident mode.

which is combined with equation (32) in matrix form:

{Ai−1,m e−gi−1,mDx −Bi−1,m}=6C(i, n; i−1, m)gi,nhi

Ni−1,mgi−1,mhi−1 7 ) {Ai,n −Bi,n e−gi ,nDx7 .

(33b)

In equation (33a), { . . . }−1 means the inverse of a matrix for left side
multiplication. So one gets iterations in one direction (downwards) for the two sets
of amplitudes:

{Ai−1,m}=
1

2 e−gi−1,mDx $6C(i, n; i−1, m)
Ni,n 7

−1

+6C(i, n; i−1, m)gi,nhi

Ni−1,mgi−1,mhi−1 7% ) {Ai,n}

+
e−gi ,nDx

2 e−gi−1,mDx $6C(i, n; i−1, m)
Ni,n 7

−1

− 6C(i, n; i−1, m)gi,nhi

Ni−1,mgi−1,mhi−1 7% ) {Bi,n}, (34a)
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{Bi−1,m}=
1
2 $6C(i, n; i−1, m)

Ni,n 7
−1

−6C(i, n; i−1, m)gi,nhi

Ni−1,mgi−1,mhi−1 7% ) {Ai,n}

+
e−gi ,nDx

2 $6C(i, n; i−1, m)
Ni,n 7

−1

+ 6C(i, n; i−1, m)gi,nhi

Ni−1,mgi−1,mhi−1 7% ) {Bi,n}. (34b)

The problems with this formally correct solution begin during the numerical
computations. The matrix {C(i, n; i−1, m)/Ni,n} is approximately tri-diagonal
(modes of one duct section mainly couple with modes of the same order in the
adjacent section). The off-diagonal elements of the inverse matrix therefore have
high magnitudes, and the inverse matrices are multiplied iteratively. Thus, the final
system of equations becomes extremely badly conditioned for a numerical
solution, if the object consists of many duct sections.

In the following numerical examples, k0x, k0y are taken as the local variables
(for a fixed frequency) which allows one to let the wave numbers appear in the
forms oi,mhi , gi,mhi as they are produced by the characteristic equation (5) and by

Figure 5. Sound pressure level 20 log =p= in a converging wedge with a wall admittance G=2+j
excited by the fundamental mode m=0 of the entrance duct. Other parameters as Figure 3.
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Figure 6. As Figure 5, but now with the first higher mode m=1 as the incident mode; this is
the surface wave mode in the entrance duct.

the secular equation (4). One then has to select values for the tangent of the wedge
angle tan a=Dy/Dx and for the admittances G and Gt . Take tan a=0·5 and the
two values G=22 j together with Gt =1, which represents full absorption for a
normal plane wave incidence on the termination (but finite reflections for incident
modes) and thus represents a termination of the wedge by an infinitely long rigid
duct. The widths are selected as k0h0 =4 and k0hI =1 for the converging wedge,
and k0h0 =1 and k0hI =4 for the diverging wedge. The number of steps is I=10
which gives k0Dy=0·3.

Figures 2(a, b) show the lateral wave numbers oi,mhi in their complex plane for
m=0, 1, . . . , 5 and k0h varied between 0·05 and 4 for the curves and between 1
and 4 in steps of k0Dh=0·3 for the points (which are the steps in the field
computations below). The admittance values in the diagrams are G=22 j,
respectively. The arrows at the curves show the direction of increasing k0h. The
mode m=1 with G=2+j (spring type reactance of the absorber) is the surface
wave mode. If a surface wave mode exists, then the modes with lower and higher
orders, respectively, than the order of the surface wave mode have opposite
curvatures for increasing k0h.

We begin the presentation of sound pressure levels (20 log =p= is plotted in the
vertical direction of the diagrams) in the converging wedge. The excitation mode
in Figure 3 is the mode m=0 of the duct ahead of the wedge with unit amplitude
A0,0 =1. The angle of the wedge is given by tan a=Dy/Dx=0·5. The wall
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admittance is G=2−j; the other parameters are indicated in the diagram. I=10
duct sections plus a section of the entrance duct are displayed along the axial
co-ordinate k0x. The imperfections of the field fitting at the section limits mainly
comes from the relatively large steps Dk0y of the field sampling points in the lateral
direction (six sampling points in the interval 0E k0yE k0hi ) and from the fact that
the sampling points do not coincide on both sides of a section limit. The modal
pattern (shape of the lateral profile) changes only marginally during the
propagation in the wedge. The local attenuation changes as a consequence of
internal reflections in the wedge. The overall transmission loss in a two-sided
wedge (both boundaries inclined and lined) with a length equal to the width at
the entrance is about 8 dB.

The next level plot in Figure 4 is for a wedge as in Figure 3; only the mode order
of the single incident mode is increased to m=1 (the point of view is changed
compared to Figure 3). Now the mode pattern drastically changes during the
propagation in the wedge: whereas the pattern at the entrance corresponds to the
first higher mode, it takes the form of the fundamental mode at the exit.
Corresponding to this change of the dominant mode is the strong change in the
local attenuation. The overall transmission loss (of about 27 dB) is mainly
produced in the local range of the dominant higher mode.

In Figure 5 (still for a converging wedge) the order of the incident mode is again
m=0, but now the wall admittance is changed to G=2+j. The change of the

Figure 7. Sound presure level in a diverging wedge with a wall admittance G=2−j and the
fundamental mode m=0 of the entrance duct as exciting mode. Other parameters as Figure 3.
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Figure 8. As Figure 7, but now with the first higher mode m=1 as the exciting mode.

field pattern in the lateral direction is stronger with this admittance than with that
of Figure 3; the overall transmission loss correspondingly is increased to about
15 dB. The internal reflections in the wedge are visible from the axial standing
wave distribution.

In Figure 6, the sound pressure level is shown for the wedge of Figure 5, but
now the mode order of the incident mode is increased to m=1 (and the point of
view is changed). As can be seen from Figure 2(a), the incident mode at the
entrance into the wedge is the surface wave mode (with an exponential decay away
from the absorber surface). This character of the sound field is retained only over
a few sections of the wedge; in later sections the field pattern changes over to the
pattern of the dominant fundamental mode. The field matching at the first section
limits is not so good as in the previous diagrams; the number of modes involved
in the modal analysis should be increased with the incident surface wave mode
beyond the limit mhi =5 applied here; this is a general finding, because many
normal modes are needed for the synthesis of the exponential slope of the surface
wave mode.

The next diagrams are for a diverging wedge. The diagrams also show the sound
pressure level over k0x, k0y. The parameter combinations are similar to those in
the previous diagrams for the converging wedge.

Figure 7 is for a diverging wedge with a wall admittance G=2−j and the
incident fundamental mode m=0. The field pattern retains its modal character;
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internal reflections practically do not exist. The local attenuation is inversely
proportional to the local width.

In Figure 8, the mode order of the incident mode is increased relative to Figure 7
to m=1 (and the point of view is different). The field pattern changes from that
of the dominant higher mode near the entrance to that of the fundamental mode
near the exit. The total transmission loss is produced in the range of the higher
mode in the first two wedge sections. The change of the dominant mode is also
visible from the deep interference minimum.

Figure 9 is a sound pressure level plot in a diverging wedge with a wall
admittance G=2+j excited by the fundamental mode m=0 of the entrance
duct. The change during propagation of the lateral profile corresponds to the
change of the profile of the fundamental mode in narrow to wide ducts; mode
conversion practically does not occur.

Figure 10 corresponds to Figure 9 except for the increase in the mode order of
the exciting mode to m=1. The surface wave character of the exciting mode is
not yet fully developed in the narrow entrance duct with k0h0 =1. Therefore, the
transition of the modal pattern along the wedge is not so pronounced, as in the
converging wedge with the wider entrance duct having a value k0h0 =4.
Nevertheless, the local attenuation concentrates on the range with the dominant
higher mode.

Figure 9. Sound pressure level in a diverging wedge with a wall admittance G=2+j and the
fundamental mode m=0 of the entrance duct as exciting mode. Other parameters as Figure 3.
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Figure 10. As Figure 9, but with the first higher mode m=1 as the exciting mode.

7. RIGID WEDGE-SHAPED DUCT TRANSITIONS

It is of some practical interest to compare the numerical results of the previous
section for lined wedge-shaped duct transitions with similar results for
wedge-shaped transitions with rigid walls, because such rigid wall transitions are
practically always associated with splitter type silencers in a duct system. One has
only to set G:0 for the production of numerical examples. In fact G is set to a
small complex value, in order to avoid numerical singularities, G=0·01−0·01j.
This value would approximately correspond to the viscous losses and to the mass
reactance at a metal sheet wall.

Figure 11 shows the sound pressure level in a (nearly) rigid converging duct
transition for the plane wave as the incident mode. The incident plane wave mainly
couples to the first higher mode of the wide wedge sections near the entrance
(which there is a propagating mode). This change of the dominant mode is
accompanied by strong internal interference variations. Deeper in the wedge the
higher mode couples back to the plane wave. As an overall effect, the sound
pressure level at the exit is higher than at the entrance by about the ratio of the
end areas.

If the exciting mode for the converging, nearly rigid wedge is the first higher
mode m=1 of the (nearly) rigid entrance duct, as in Figure 12, the exciting mode
runs into cut-off conditions inside the wedge. The approach to cut-off is associated
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with a remarkable level reduction. Behind the cut-off section of the incident mode
the fundamental mode m=0 is dominant.

In Figure 13, the (nearly) rigid wedge is diverging and is excited by an incident
plane wave. Although the internal reflections produce some higher mode content
of the field, the plane wave remains the dominant mode and the reduction of
the sound pressure level corresponds to the increase of the local duct area in the
wedge.

Figure 14 corresponds to Figure 13 (rigid diverging wedge), except the incident
mode is the first higher mode m=1 of the entrance duct, which there is a cut-off
mode. Therefore, this case is only of principal interest inasmuch as it shows that
the tendency of mode conversion in a wedge is in the direction of lower mode
orders; the mode m=1 is a propagating mode near the exit of the wedge, however,
the dominant mode there is m=0.

It is this—not at all trivial—fact which explains the common experience that
computations of the transmission loss of splitter type silencers which are
performed with entrance and exit ducts having the same widths as the silencer and
with an incident plane wave agree quite well with measured data taken at silencers
which are preceded and followed by conical rigid duct transitions.

Figure 11. Sound pressure level in a converging wedge-shaped duct transition with (nearly) rigid
walls for an incident plane sound wave. G=0·01−0·01j, Gt =1, mhi =5, I=10, Dx/Dy=0·5,
k0hi =0·3, {A0,m}= {1, 0, 0, 0, 0, 0}.
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Figure 12. As Figure 11, but excited by the first higher mode of the rigid entrance duct.

8. CONCLUDING REMARKS

Conical transitions are unavoidable between the flow ducts and inserted splitter
type silencers, and they are advantageous between the sections of silencer cascades
with different duct widths. The computation of the total transmission loss of such
silencer installations, including all modal reflections and couplings, needs an
algorithm for the evaluation of the sound transmission through wedge-shaped duct
sections. The few examples shown above indicate that it is reasonable to apply
sound absorbing linings at the walls of the transitions. Three global effects can be
distinguished: the internal reflections in the converging wedge, the coupling to
other dominant modes, mostly lower in the mode order, and the variation of the
local attenuation corresponding to the changing local duct width.

The computation of a sound pressure level plot, as shown above, took about
2 min (with non-compiled Mathematica programs on a Macintosh Quadra 800).
Most of the time is consumed by the evaluation of the mode amplitudes of the
internal sections and by the computation of the sound field at the sampling points.
In a silencer design neither the internal mode amplitudes are needed (only the B0,m

and AI,m are used in further computations) nor the sound pressure value in internal
spatial points.

The choice of the same wall admittance value G for the lining of the entrance
duct (section i=0) as for the other sections of the transition wedge is not
mandatory. If a different value G0 is taken for the entrance duct, only the wave
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numbers o0,mh0 and the propagation constants g0,mh0 must be evaluated separately;
the remainder of the procedure remains the same It is not even necessary that the
lining admittance G is constant along the wedge; a variable G(x) would have only
the consequence that the characteristic equation must be solved for a number of
right sides.

As was already mentioned above, the use of a locally reacting lining is only a
matter of simplicity. A similar modal analysis with the somewhat more
complicated orthogonality relation of modes in a duct with a bulk reacting lining
can be performed. Examples of modal analysis computations in ducts with bulk
reacting linings are included in reference [2].

Above it was assumed tacitly that the wedge extends infinitely in the z direction
(direction normal to the planes of Figures 1(a) and 1(b)) and that the sound field
is constant in that direction. In the case of a finite extend in the z direction and/or
of a sound source producing a sound field with a z profile qz (z), one would have
to multiply all field components in equations (1) and (2) by qz (z). This factor would
cancel in the above computations (except in the plots for the field). If qz (z) is
proportional to one of the distributions e2jkzz, cos (kzz) and sin (kzz) with a given
wave number kz or to a linear combination of them and if the walls terminating
the wedge in the z direction are parallel to each other, the only consequence would

Figure 13. Sound pressure level in a (nearly) rigid diverging wedge-shaped duct transition with
the plane wave as exciting mode. G=0·01−0·01j, Gt =1, mhi =5, I=10, Dx/Dy=0·5, k0Dhi =0·3,
{A0,m}= {1, 0, 0, 0, 0, 0}.
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Figure 14. As Figure 13, but excited by the first higher mode m=1 of the entrance duct, which
there is a cut-off mode.

be the replacement k2
0:k2

0 − k2
z in equation (4). Thus, a sound source and/or a

termination of the wedge by lateral, parallel walls (either rigid or absorbing) can
be easily introduced. If the sound field of the source is not symmetrical or
antisymmetrical with respect to y=0 (either skew source field distribution or the
source placed outside y=0), the source field must be analyzed in symmetrical plus
antisymmetrical modes of the duct section where the source is placed; the above
analysis must then be performed for both types of symmetry, and the fields for
them finally superimposed. Because the duct modes are orthgonal, the modal
analysis of the source field is performed by standard techniques. The duct section
containing the source plays the role of the entrance duct in the above analysis; the
duct mode components of the source field are the ‘‘incident modes’’ from above.
If the lateral walls of the wedge are also inclined (producing a conical duct), the
analysis is principally the same; but the formulation and the numerical
computation blows up from a two-dimensional modal analysis to a
three-dimensional analysis.

As was indicated in the introduction, the immense literature about underwater
sound fields in wedge-shaped spaces with an absorbing boundary cannot be
applied for the present task because of the severe restriction to very small wedge
angles of the underwater acoustic theoretical approximations. It should, however,
not be overlooked that the present method of stepped duct sections as an



. . 696

approximation to a wedge also has an inherent upper limit of the wedge angle
(a1 50°). Larger angles would need larger numbers I of sections, and the numerical
errors of the modal analysis would increase. A succeeding paper will treat the case
of wedge angles p and 2p by a different method; such wedge angles appear in the
analysis of screens which are sound absorbing on one or both sides.
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